Skip to main content

DNA Analysis Aids in Classifying Single-Celled Algae


For nearly 260 years -- since Carl Linnaeus developed his system of naming plants and animals -- researchers classified species based on visual attributes like color, shape and size. In the past few decades, researchers found that sequencing DNA can more accurately identify species. A group of single-celled algae -- Symbiodinium -- that live inside corals and are critical to their survival -- are only now being separated into species using DNA analysis, according to biologists.

"Unfortunately with Symbiodinium, scientists have been hindered by a traditional morphology-based system of species identification that doesn't work because these organisms all pretty much look the same -- small round brown cells," said Todd LaJeunesse, assistant professor of biology at Penn State. "This delay in adopting the more accurate convention of identifying species using genetic techniques has greatly impeded progress in the research of symbiotic reef-building corals, especially with regard to their ability to withstand global warming."
LaJeunesse and his colleagues looked at Symbiodinium that previously had been grouped together as subsets of the same species. They report their results in the September issue of the Journal of Phycology. They examined specific DNA markers -- identifiers -- from the organisms cell nuclei, mitochondria and chloroplasts. Even though the symbionts appeared very much the same, except for their size, genetic evidence confirmed that the two are different species altogether.
These findings indicate that hundreds of other coral symbionts already identified with preliminarily genetic data are also distinct species with unique ecological distributions.
"The recognition of symbiont species diversity should substantially improve research into reef-building corals and facilitate breakthroughs in our understanding of their complex biology," said LaJeunesse.
He began his work of classifying Symbiodinium using genetic techniques as part of his research into their ecology and evolution and in later studies of coral bleaching events related to global warming.
"Knowing exactly which Symbiodinium species you're dealing with is important because certain species of Symbiodinium associate with certain species of coral," he said. "Although many corals are dying as a result of global climate change, some may be able to survive because they associate with Symbiodinium species that are better adapted to warm water temperatures."
Other researchers on this project were John Everett Parkinson, graduate student in biology, Penn State, and James Davis Reimer, associate professor of biology, University of the Ryukyus, Okinawa.

Comments

Popular posts from this blog

Emasculation and Bagging

If the female flower is bisexual , removal of anthers from the flower bud before the anther dehisce using a pair of forceps this is called emasculation . Emasculated flowers have to be covered with a bag of suitable size made of butter paper to prevent contamination of its stigma with unwanted pollen . this process is called bagging 

Cell Death Discovery Suggests New Ways to Protect Female Fertility

 Melbourne researchers have identified a new way of protecting female fertility, offering hope to women whose fertility may be compromised by the side-effects of cancer therapy or by premature menopause. The researchers, from the Walter and Eliza Hall Institute, Monash University and Prince Henry's Institute of Medical Research, made the discovery while investigating how egg cells die. They found that two specific proteins, called PUMA and NOXA, cause the death of egg cells in the ovaries. The finding may lead to new strategies that protect women's fertility by blocking the activity of these two proteins. Associate Professor Clare Scott from the Walter and Eliza Hall Institute said the research showed that when the DNA of egg cells is damaged following exposure to radiation or chemotherapy, such as that received during some cancer treatments, PUMA and NOXA trigger the death of the damaged eggs. This egg cell death causes many female cancer patients to become infertile. &q

Rhodophyceae

Rhodophyta are commonly called red algae because of the predominance of the red pigment, r-phycoerythrin in their body. Majority of the red algae are marine with greater concentrations found in the warmer areas. They occur in both well-lighted regions close to the surface of water and also at great depths in oceans where relatively little light penetrates. The red thalli of most of the red algae are multicellular. Some of them have complex body organisation. The food is stored as floridean starch which is very similar to amylopectin and glycogen in structure. The red algae usually reproduce vegetatively by fragmentation. They reproduce asexually by non-motile spores and sexually by non-motilegametes. Sexual reproduction is oogamous and accompanied by complex  post fertilisation developments. The common members are: Polysiphonia, Porphyra , Gracilaria and Gelidium.