Skip to main content

Rapid Coral Death by a Deadly Chain Reaction


Most people are fascinated by the colorful and exotic coral reefs, which form habitats with probably the largest biodiversity. But human civilization is the top danger to these fragile ecosystems through climate change, oxygen depletion and ocean acidification. Industrialization, deforestation and intensive farming in coastal areas are changing dramatically the conditions for life in the oceans. Now scientists at the Max Planck Institute for Marine Microbiology from Bremen together with their colleagues from Australia, Sultanate of Oman and Italy have investigated how and why the corals die when exposed to sedimentation. According to their findings, oxygen depletion, together with an acidification of the environment, creates a chain reaction that leads to coral death.




Reef forming stone corals inhabit the light-flooded tropical shallow coastal regions 30 degree south and north of the equator. Coral polyps build the carbonate skeletons that form the extensive reefs over hundreds to thousands of years. Photosynthesis of the symbiotic algae inside the polyps produces oxygen and carbohydrates from carbon dioxide and water, thereby feeding the polyps.
Since the 1980s the process of coral bleaching is under study: elevated temperatures of 1 to 3 degrees induce the algae to produce toxins. The polyps react by expelling the algae and the coral reef loses its color as if it was bleached. Without its symbionts the coral can survive only several weeks.
In coastal areas with excessive soil erosion where rivers flush nutrients, organics and sediments to the sea, corals can die quickly when exposed to sedimentation. Miriam Weber, scientist at the Max Planck Institute for Marine Microbiology in Bremen, explains the scientific approach."Our idea was that a combination of enhanced deposition of sediments with elevated organic matter load and naturally occurring microorganisms can cause the sudden coral death. To get a handle on the diverse physical, chemical and biological parameters we performed our experiments at the Australian Institute for Marine Science (AIMS) in Townsville under controlled conditions in large containers (mesocosms), mimicking the natural habitat."
The team of researchers found out the crucial steps:
Phase 1: When a two millimeter layer of sediment enriched with organic compounds covers the corals, the algae will stop photosynthesis, as the light is blocked.
Phase 2: If the sediments are organically enriched, then digestion of the organic material by microbial activity reduces oxygen concentrations underneath the sediment film to zero. Other microbes take over digesting larger carbon compounds via fermentation and hydrolysis thereby lowering the pH.
Phase 3: Lack of oxygen and acidic conditions harm small areas of coral tissue irreversibly. The dead material is digested by microbes producing hydrogen sulfide, a compound that is highly toxic for the remaining corals. The process gains momentum and the remainder of the sediment-covered coral surface is killed in less than 24 hours.
Miriam Weber: "First we thought that the toxic hydrogen sulfide is the first killer, but after intensive studies in the lab and mathematical modeling we could demonstrate that the organic enrichment is the proximal cause, as it leads to lack of oxygen and acidification, kicking the corals out of their natural balance. Hydrogen sulfide just speeds up the spreading of the damage. We were amazed that a mere 1% organic matter in the sediments is enough to trigger this process. The extreme effect of the combination of oxygen depletion and acidification are of importance, keeping in mind the increasing acidification of the oceans. If we want to stop this destruction we need some political sanctions to protect coral reefs."
Katharina Fabricius from the AIMS adds: "This study has documented for the first time the mechanisms why those sediments that are enriched with nutrients and organic matter will damage coral reefs, while nutrient-poor sediments that are resuspended from the seafloor by winds and waves have little effect on reef health. Better land management practices are needed to minimize the loss of top soil and nutrients from the land, so that they are not being washed into the coastal sea."

Comments

Popular posts from this blog

Emasculation and Bagging

If the female flower is bisexual , removal of anthers from the flower bud before the anther dehisce using a pair of forceps this is called emasculation . Emasculated flowers have to be covered with a bag of suitable size made of butter paper to prevent contamination of its stigma with unwanted pollen . this process is called bagging 

Cell Death Discovery Suggests New Ways to Protect Female Fertility

 Melbourne researchers have identified a new way of protecting female fertility, offering hope to women whose fertility may be compromised by the side-effects of cancer therapy or by premature menopause. The researchers, from the Walter and Eliza Hall Institute, Monash University and Prince Henry's Institute of Medical Research, made the discovery while investigating how egg cells die. They found that two specific proteins, called PUMA and NOXA, cause the death of egg cells in the ovaries. The finding may lead to new strategies that protect women's fertility by blocking the activity of these two proteins. Associate Professor Clare Scott from the Walter and Eliza Hall Institute said the research showed that when the DNA of egg cells is damaged following exposure to radiation or chemotherapy, such as that received during some cancer treatments, PUMA and NOXA trigger the death of the damaged eggs. This egg cell death causes many female cancer patients to become infertile. ...

Rhodophyceae

Rhodophyta are commonly called red algae because of the predominance of the red pigment, r-phycoerythrin in their body. Majority of the red algae are marine with greater concentrations found in the warmer areas. They occur in both well-lighted regions close to the surface of water and also at great depths in oceans where relatively little light penetrates. The red thalli of most of the red algae are multicellular. Some of them have complex body organisation. The food is stored as floridean starch which is very similar to amylopectin and glycogen in structure. The red algae usually reproduce vegetatively by fragmentation. They reproduce asexually by non-motile spores and sexually by non-motilegametes. Sexual reproduction is oogamous and accompanied by complex  post fertilisation developments. The common members are: Polysiphonia, Porphyra , Gracilaria and Gelidium.